Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments

Generalized sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. Here we show that SpGEMM also yields efficient algorithms for general sparse-matrix indexing in distributed memory, provided that the underlying SpGEMM implementation is sufficiently flexible and scalable. We d...

متن کامل

Highly Parallel Sparse Matrix-Matrix Multiplication

Generalized sparse matrix-matrix multiplication is a key primitive for many high performance graph algorithms as well as some linear solvers such as multigrid. We present the first parallel algorithms that achieve increasing speedups for an unbounded number of processors. Our algorithms are based on two-dimensional block distribution of sparse matrices where serial sections use a novel hyperspa...

متن کامل

Parallel Implementation of Interval Matrix Multiplication

Two main and not necessarily compatible objectives when implementing the product of two dense matrices with interval coefficients are accuracy and efficiency. In this work, we focus on an implementation on multicore architectures. One direction successfully explored to gain performance in execution time is the representation of intervals by their midpoints and radii rather than the classical re...

متن کامل

Simultaneous Input and Output Matrix Partitioning for Outer-Product-Parallel Sparse Matrix-Matrix Multiplication

For outer-product–parallel sparse matrix-matrix multiplication (SpGEMM) of the form C=A×B, we propose three hypergraph models that achieve simultaneous partitioning of input and output matrices without any replication of input data. All three hypergraph models perform conformable one-dimensional (1D) columnwise and 1D rowwise partitioning of the input matrices A and B, respectively. The first h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2012

ISSN: 1064-8275,1095-7197

DOI: 10.1137/110848244